By Peter G. Jones and George M. Sheldrick

Anorganisch-Chemisches Institut der Universität Göttingen, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany

and Erich Hädicke

Ammoniaklaboratorium, BASF Aktiengesellschaft, D-6700 Ludwigshafen, Federal Republic of Germany

(Received 4 June 1980; accepted 23 June 1980)

Abstract. $C_{54}H_{45}Au_3P_3S^+$. PF_6^- , $M_r = 1554.81$, monoclinic, $P2_1/b$ (c axis unique), a = 11.079 (4), b = 18.642 (7), c = 55.53 (3) Å, $\gamma = 96.81$ (3)°, U = 11388 Å³, $D_x = 1.814$ Mg m⁻³, μ (Cu $K\alpha$) = 16.3 mm⁻¹, Z = 8. R = 0.075 for 9330 unique observed reflexions. There are two formula units in the asymmetric unit, the cations of which are linked by weak Au...Au interactions. Several Au-S-Au angles deviate appreciably from 90°.

Introduction. The title compound was obtained as colourless needles in low yield from the reaction of Ph_3PAuCl , $Et_4P_2S_2$ and $AgPF_6$ in dichloromethane. An X-ray investigation was undertaken to determine the nature of the product.

Preliminary photographs established the space group as $P2_1/c$ with an extremely long b axis. It proved impossible to separate adjacent reflexions with Mo $K\alpha$ radiation; data were therefore collected with monochromated Cu $K\alpha$ radiation on a Syntex $P2_1$ diffractometer. 15 288 reflexions were measured $(2\theta_{max} = 115^{\circ})$ by a profile-fitting method based on a Lehmann-Larsen algorithm (Blessing, Coppens & Becker, 1972) and programmed by D. Schwarzenbach.

After application of Lp and empirical absorption corrections (crystal size $0.65 \times 0.075 \times 0.05$ mm) averaging equivalent reflexions gave 14 380 unique reflexions, 9344 with $F > 4\sigma(F)$. Because of the long axis, the non-standard setting of $P2_1/b$ was used for all calculations; the program system used (*SHELXTL*) imposes the restrictions |h| < 50, |k| < 50 but allows all values of *l*.

The Au atoms were located by direct methods, and other non-hydrogen atoms by difference syntheses. P and S atoms were distinguished only on chemical grounds. Refinement (Au, S and P anisotropic, phenyl rings as rigid groups with C-C 1.395 Å, angles 120°) proceeded to $R = R' [= \sum w^{1/2} \Delta / \sum w^{1/2} |F_o|] = 0.075$. The weighting scheme was $w^{-1} = \sigma^2(F) + 0.001F^2$. 14 low-angle reflexions with $|F_o - F_c| > 7.5\sigma$ were 0567-7408/80/112777-03\$01.00

omitted. H atoms were not included. Final atomic coordinates are given in Table 1, selected bond lengths and angles in Table 2.*

Discussion. X-ray analysis reveals that the product is the previously unknown title compound, $(Ph_3PAu)_3$ -S⁺.PF₆⁻. The O analogue of the cation has, however, been reported (Nesmeyanov, Grandberg, Dyadchenko, Lemenovskii & Perevalova, 1974).

The Au–S–Au angles are approximately 90°, as would be expected for bonding involving S atom porbitals. Similar angles (at Cl) are observed in (Ph₃PAu)₂Cl⁺.ClO₄⁻, the only other Au compound with a bridging anionic ligand whose structure has been reported (Jones, Sheldrick, Usón & Laguna, 1980).

* Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35445 (57 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. Au, S and P atoms of the two independent cations, showing the atom numbering (for Au and S) and the short $Au \cdots Au$ contacts (e.s.d.'s 0.003 Å). P atom numbers are those of their attached Au atom. Phenyl rings have been omitted for clarity.

© 1980 International Union of Crystallography

2778 μ_i -SULPHIDO-TRIS[TRIPHENYLPHOSPHINEGOLD(I)] HEXAFLUOROPHOSPHATE

Table 1. Atom coordinates ($\times 10^4$) and isotropic temperature factors (Å $^2 \times 10^3$)

	X	y	Z	U		x	у	Ζ	U
Au(1)	925 (1)	7774 (1)	3261(1)	75 (1)*	C(51)	1991 (20)	11572 (10)	3797 (3)	134 (12)
Au(2)	1129 (1)	8546 (1)	3784 (1)	76 (1)*	C(52)	2991 (20)	11582 (10)	3950 (3)	126 (11)
Au(3)	2745 (1)	9197(1)	3362 (1)	76 (1) *	C(53)	4000 (20)	11250 (10)	3879 (3)	180 (17)
Au(4)	989 (1)	7004 (1)	4056 (1)	75 (1)*	C(54)	4007 (20)	10910 (10)	3655 (3)	138 (12)
Au(5)	1174 (1)	6194 (1)	3537 (1)	75 (1)*	C(55)	-1154 (17)	6651 (7)	2935 (3)	80 (7)
Au(6)	-902 (1)	5682(1)	3976 (1)	77 (1)*	C(56)	-2375 (17)	6397 (7)	2897 (3)	102 (8)
P(1)	641 (6)	7593 (3)	2993 (1)	78 (3)*	C(57)	2714 (17)	5667 (7)	2846 (3)	108 (9)
P(2)	-160 (6)	9172 (3)	3993 (1)	81 (3)*	C(58)	-1832 (17)	5193 (7)	2834 (3)	131 (11)
P(3)	2988 (7)	10362 (3)	3240(1)	82 (3) ⁺	C(59)	612(17)	5448 (7)	2872 (3)	110 (10)
P(4)	2284 (7)	/165 (3)	4377(1)	80 (3)*	C(60)	-2/3(1/)	$\frac{0177(7)}{7064(10)}$	2923(3)	90 (0)
P(5)	2/11(7)	3089 (4)	3301(1)	01 (3) 80 (3)*	C(61)	-238(18)	2225 (10)	2700 (3)	90 (7)
P(0) S(1)	-1503(7)	4732 (3)	4217(1) 3533(1)	71(2)*	C(62)	910(18)	8603 (10)	2070(3)	122 (10)
S(1) = S(2)	363 (6)	6685 (3)	3740(1)	77(2)*	C(64)	478 (18)	8522 (10)	2756(3)	134(12)
C(1)	-303(0)	6379 (8)	4413 (3)	$\frac{72}{81}(7)$	C(65)	= 690(18)	8162 (10)	2286 (3)	130 (11)
C(2)	2621 (16)	5704 (8)	4331 (3)	106 (9)	C(66)	1058 (18)	7883 (10)	2511 (3)	104 (9)
C(3)	3254 (16)	5105 (8)	4356 (3)	99 (8)	C(67)	1883 (15)	7991 (10)	3097 (3)	88 (7)
C(4)	4401 (16)	5181 (8)	4463 (3)	98 (8)	C(68)	-2135 (15)	7896 (10)	3342 (3)	104 (9)
C(5)	4915 (16)	5857 (8)	4545 (3)	93 (8)	C(69)	3212 (15)	8096 (10)	3437 (3)	159 (14)
C(6)	4282 (16)	6456 (8)	4520 (3)	101 (8)	C(70)	4036 (15)	8390 (10)	3287 (3)	134 (12)
C(7)	1565 (16)	7267 (9)	4667 (3)	78 (6)	C(71)	-3785 (15)	8485 (10)	3043 (3)	137 (12)
C(8)	552 (16)	7646 (9)	4676 (3)	100 (8)	C(72)	-2708 (15)	8285 (10)	2947 (3)	118 (10)
C(9)	38 (16)	7789 (9)	4897 (3)	108 (9)	C(73)	4137 (13)	5968 (9)	3515 (3)	83 (7)
C(10)	535 (16)	7555 (9)	5110 (3)	114 (10)	C(74)	4109 (13)	6237 (9)	3749 (3)	99 (8)
C(11)	1548 (16)	7176 (9)	5101 (3)	123(10)	C(75)	5192(13)	6463 (9)	3870(3)	107 (9)
C(12)	2062 (16)	7032 (9)	4879(3)	105 (9)	C(76)	6304(13)	6421 (9)	3/30(3)	105 (9)
C(13)	3370 (14)	7934 (8) 8103 (8)	4347 (3)	94 (8)	C(77)	533(13)	5026 (0)	3322(3) 3401(3)	95 (8)
C(14)	4734 (14)	8704 (8)	4091(3)	122 (11)	C(78)	3007 (17)	5958 (10)	3051(3)	84 (7)
C(15)	5106 (14)	9136 (8)	4288 (3)	123 (10)	C(80)	3351 (17)	6691 (10)	3007(3)	102 (9)
C(17)	4613 (14)	8968 (8)	4515 (3)	133(12)	C(81)	3627 (17)	6929 (10)	2773 (3)	142 (12)
C(18)	3748 (14)	8366 (8)	4545 (3)	105 (9)	C(82)	3560 (17)	6434 (10)	2583 (3)	127 (11)
C(19)	-1225 (14)	8651 (8)	4209 (3)	75 (6)	C(83)	3216 (17)	5702 (10)	2627 (3)	155 (14)
C(20)	-1692 (14)	7953 (8)	4141 (3)	81(7)	C(84)	2940 (17)	5464 (10)	2861 (3)	115 (10)
C(21)	-2450 (14)	7522 (8)	4298 (3)	100 (8)	C(85)	2464 (24)	4711 (9)	3352 (4)	112 (9)
C(22)	-2742 (14)	7789 (8)	4522 (3)	103 (9)	C(86)	1296 (24)	4392 (9)	3409 (4)	131 (11)
C(23)	-2275 (14)	8487 (8)	4590 (3)	97 (8)	C(87)	1041 (24)	3641 (9)	3415 (4)	135 (12)
C(24)	-1517 (14)	8918 (8)	4434 (3)	98 (8)	C(88)	1953 (24)	3209 (9)	3363 (4)	124 (11)
C(25)	578 (19)	9877 (10)	4176 (3)	91 (8)	C(89)	3120 (24)	3528 (9)	3305 (4)	148 (13)
C(26)	/5 (19)	10515 (10)	4221 (3)	114(10)	C(90)	3376 (24)	4279 (9)	3300 (4)	145 (13)
C(27)	1744 (10)	10008 (10)	4378 (3)	157(14)	C(91)	2920 (10)	4201(11)	3005 (3)	$\frac{71}{115}(10)$
C(28)	2248 (19)	10271 (10)	4489 (3)	132(14) 145(13)	C(92)	-3791(10) -4880(16)	4155 (11)	3972 (3)	155 (14)
C(30)	1665 (19)	9755 (10)	4287 (3)	119 (10)	C(94)	-5097(16)	3416 (11)	3969 (3)	142 (13)
C(31)	-1133(18)	9603 (10)	3789 (3)	89 (7)	C(95)	4225 (16)	3069 (11)	4090 (3)	139 (12)
C(32)	-760 (18)	9791 (10)	3555 (3)	121 (10)	C(96)	-3136 (16)	3462 (11)	4163 (3)	117 (10)
C(33)	-1550 (18)	10086 (10)	3398 (3)	143 (13)	C(97)	-279 (16)	4145 (9)	4234 (4)	90 (7)
C(34)	-2714 (18)	10193 (10)	3474 (3)	132 (11)	C(98)	144 (16)	3948 (9)	4459 (4)	103 (9)
C(35)	-3088 (18)	10005 (10)	3708 (3)	133 (12)	C(99)	1070 (16)	3504 (9)	4473 (4)	122 (10)
C(36)	-2297 (18)	9710 (10)	3865 (3)	126 (11)	C(100)	1574 (16)	3257 (9)	4262 (4)	126 (11)
C(37)	1827 (16)	10629 (10)	3045 (3)	82(7)	C(101)	1151 (16)	3454 (9)	4038 (4)	156 (14)
C(38)	1840 (16)	11343 (10)	2969 (3)	104(9)	C(102)	225 (16)	3898 (9)	4024 (4)	129 (11)
C(39)	954 (16)	11529 (10)	2810(3)	113 (10)	C(103)	1808 (18)	4988 (11)	4520 (5)	93 (8)
C(40)	33 (16)	10286 (10)	2720 (3)	130(11) 142(13)	C(104)	=2703(18)	4332 (11)	4890 (3)	122 (10)
C(41) C(42)	927 (16)	10100 (10)	2961 (3)	172(13)	C(105)	-3000(18) -2475(18)	5440(11)	4979 (3)	116 (10)
C(42) C(43)	4375 (15)	10630 (11)	3081 (3)	87 (7)	C(100)	1639 (18)	5876 (11)	4839 (3)	151 (14)
C(44)	4937 (15)	11340 (11)	3089 (3)	126 (11)	C(108)	- 1335 (18)	5650 (11)	4609 (3)	129 (11)
C(45)	5976 (15)	11541 (11)	2952 (3)	132 (11)	P(7)	4246 (9)	2632 (5)	4764 (1)	118 (4)*
C(46)	6454 (15)	11032 (11)	2807 (3)	134 (12)	F(1)	2825 (26)	2554 (15)	4825 (5)	209 (11)
C(47)	5892 (15)	10322 (11)	2799 (3)	155 (14)	F(2)	4105 (22)	2205 (13)	4539 (4)	178 (9)
C(48)	4852 (15)	10121 (11)	2936 (3)	101 (8)	F(3)	4019 (27)	3346 (16)	4616 (5)	213 (11)
C(49)	3007 (20)	10900 (10)	3502 (3)	88 (7)	F(4)	5618 (23)	2789 (13)	4714 (4)	185 (9)
C(50)	1999 (20)	11231 (10)	3573 (3)	111 (9)	F(5)	4398 (32)	3029 (18)	5000 (6)	257 (14)

* Equivalent isotropic U calculated from anisotropic U.

Table 1 (cont.)

	x	У	Ζ	U
F(6)	4382 (26)	1913 (15)	4902 (5)	207 (10)
P(8)	5236 (19)	3520 (8)	2686 (3)	200 (9)*
F(7)	4908 (33)	4222 (21)	2817 (6)	267 (15)
F(8)	4489 (26)	3704 (15)	2453 (5)	197 (10)
F(9)	5711 (29)	2847 (18)	2576 (6)	232 (12)
F(10)	6310 (30)	3982 (18)	2566 (6)	226 (12)
F(11)	4266 (34)	2987 (20)	2810 (6)	252 (14)
F(12)	5862 (47)	3373 (27)	2922 (10)	348 (24)

Table 2. Bond lengths (Å) and angles (°)

Au(1) P(1) 2.2	81 (8)	Au(1) - S(1)	2.326 (7)
Au(2) - P(2) 2·2	70 (8)	Au(2)-S(1)	2.342 (7)
$Au(3) - P(3) = 2 \cdot 2$	59 (7)	Au(3) - S(1)	2.333 (7)
Au(4)–P(4) 2·2	84 (8)	Au(4)- S(2)	2.338 (7)
Au(5) P(5) 2.2	62 (8)	Au(5) S(2)	2.320 (7)
$Au(6) - P(6) = 2 \cdot 2$	57 (7)	Au(6)–S(2)	2.303 (7)
P(1) - Au(1) - S(1)	175.9 (3)	P(2) - Au(2) - S(1) 171.9 (3)
P(3) - Au(3) - S(1)	173-3 (3)	P(4) - Au(4) - S(2) 172-8 (3)
P(5) - Au(5) - S(2)	176-5 (3)	P(6) Au(6) S(2) 176.9 (3)
Au(1)-S(1)-Au(2)	87.7 (3)	Au(1)-S(1)-Au	u(3) 86·3 (3)
Au(2)-S(1)-Au(3)	83.3 (3)	Au(4) - S(2) - Au(4) - Au(4) - S(2) - Au(4) - S(2) - Au(4) - S(2) - Au(4) -	$\mu(5) = 89 \cdot 2(3)$
Au(4) - S(2) - Au(6)	82.9(3)	Au(5)-S(2)-Au(5)	u(6) 95.0(3)

Au--P lengths fall in the expected range for two-coordinate Au, and the P-Au-S angles are all close to linear (maximum deviation $8 \cdot 1^{\circ}$). The Au-S lengths vary from $2 \cdot 303$ (7) to $2 \cdot 342$ (7) Å; no other Au--sulphide bond lengths are available for comparison, although the dimeric organic sulphide derivative $|AuSCH_2PEt_2|_2$ has $Au-S = 2 \cdot 31$ Å (Crane & Beall, 1978).

The cations are arranged in pairs with short contacts between the Au atoms $|Au(1)\cdots Au(5)|$ 3.361 (3),

Au(2)...Au(4) 3.236 (3) Å] (Fig. 1). Such contacts are a common feature of the structural chemistry of Au¹, although no theoretical explanation for them has been proposed. It is also striking that the angles at S(1) are all rather less than 90°, associated with further short Au···Au distances. It is thus feasible that weak Au···Au interactions cause these distortions; a similar effect is seen in (Ph₃PAu)₂Cl⁺ (Jones *et al.*, 1980). However, the angles at S(2) show a different pattern, only Au(4)–S(2)–Au(6) being appreciably less than 90°. This leads to a more varied set of Au···Au distances, Au(5)···Au(6) being rather long and Au(4)···Au(6) short. The two cations also show appreciable differences in the orientation of the phenyl rings.

The PF₆ ions show high thermal motion, but do not appear to be disordered. The temperature factors of the cations are also somewhat high; both this and the rather high R may be attributed to the difficulty of performing accurate absorption corrections for a needle-shaped crystal with high μ .

We thank the Verband der Chemischen Industrie for financial support. Crystallographic programs were written by GMS and Dr W. Clegg.

References

- BLESSING, R. H., COPPENS, P. & BECKER, P. (1972). J. Appl. Cryst. 7, 488–492.
- CRANE. W. S. & BEALL, H. (1978). Inorg. Chim. Acta, 31, L469-L470.
- JONES, P. G., SHELDRICK, G. M., USÓN, R. & LAGUNA, A. (1980). Acta Cryst. B36, 1486–1488.
- NESMEYANOV, A. N., GRANDBERG, K. I., DYADCHENKO, V. P., LEMENOVSKII, D. A. & PEREVALOVA, E. G. (1974). *Izv. Akad. Nauk SSSR Ser. Khim.* pp. 740–742.

Acta Cryst. (1980). B36, 2779-2781

A Complex of 1,15-Bis(2-bromophenyl)-2,5,8,11,14-pentaoxapentadecane and Mercury Dibromide

By GABRIELA WEBER

Anorganisch-Chemisches Institut der Universität Göttingen, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany

(Received 12 June 1980; accepted 1 July 1980)

.

Abstract. $C_{22}H_{28}Br_2O_5$. HgBr₂, $M_r = 892 \cdot 7$, C2/c, $a = 31 \cdot 805$ (7), $b = 7 \cdot 954$ (3), $c = 23 \cdot 826$ (5) Å, $\beta = 113 \cdot 22$ (4)°, Z = 8, $d_c = 2 \cdot 141$ Mg m⁻³, $\mu_{MoKa} = 0567 \cdot 7408/80/112779 \cdot 03\01.00

11.30 mm⁻¹; $R_w = 0.066$ for 3504 data [weight = $1/\sigma^2(F_o)$]. The ligand wraps around the cation in a nearly circular manner such that all its O atoms (in © 1980 International Union of Crystallography